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SUMMARY

Mathematical modeling is becoming a vital tool in jengineerir.y design.
These models have been used to provide decision suppogt to degigners of
systems characterized by many design choices. Howevef, for the design of
complex systems, these models become too large and rsome¢ to be of
significant value. As a result, research has progregsed in the
decomposition of the design problem. '

A decision support system, serving as a computeg-based/aid for
engineers designing weapon systems, must integrate "proceqdures dealing with
designing for producibility and designing for supportabildity with those
dealing with designing for performance cost and schedule* (ULCE
I'plementation Plan, 1987). One of the characteristics of large weapon
system development that causes difficulties in achieving this integration
is the hierarchical nature of the design process. Typically, a system is
designed in terms of subsystems which are required to meet certain
specifications. Problems begir to arise when these specifications carnnot
be met. Consequently, these design processes may be enhanced by a
computer-based system that supports the hierarchical nature of design.

This research examines the application of mathematical modeling and
knowledge-based system techniques to the development of decisign support )

systems to support engineering design. /lG; ‘w}ﬂ: ,}“;71tvxn¥ayt }%J\kfatﬁfgﬁ.c »
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ENGINEERING DESIGN WITH DECISION SUPPORT:
AN APPLICATION OF GOAL DECOMPOSITION

1. INTRODUCTION

Engineering design in its broadest sense refers to the
activity of selecting and placing materials to form a
system. Because of the inherent complexities, design engineers
have 1increasingly depended upon mathematical modeling to help
guide the design process [12]. However, for the design of large
systems, these models quickly become too large and cumbersome Lo
be of significant value. As a result, research has progressed
into the decomposition of the design problem with the inta2nt of
breaking the main design into a series of smaller design problens

that can be solved and then recombined in the hope of generating

a good global design.

Figure 1l illustrates a network model of the design
deconposition problem. The node at the top level (level 0; of
the network represents the system which is to be designed. As we

pass downward through the network, the parts of the system are
exploded into greater detail, until we recach the bottom of the
network where no further decomposition is possible.

The netwoerk shown in Figure 1 can be thought of as actually

containing t(wo different types of optimization problems: (1) A

high level optimization, and (2) Several lower level

optimizations. The high level optimization 1is equivalent to

answering the question, "What type of system do we want and what
1

" ..MJ
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do we want it to be able to do?" An example of this type of

optimization problem, which 1s typically characterized by
multiple objectives, can be found in [5]. In the case that
several designs have already been established, Pareto optimal

designs can be determined by the method given in [11] to reduce
to list of candidate designs to some managable unumber. The design
decisions that are made at this level are then passed downward to
the next level (level 1) in the form of system specifications.

At the middle and lowest levels 1in the network, the
objective is not to optimize the design of the subcomponents over
some set of objectives, but instead to meet some stated level of
attributes that has been providee "y a parent optimization, In
some cases it may be suboptimal for a subcomponent to over-
perform as well zs under-perform. For example, in designing an
aircraft, we would like to achieve a specified level of speed (an
attribute measuring performance); however, optimizing the wing
design for speed would clearly be suboptimal it the landing gear
of the aircraft 1s not designed to accommodate the greater
speeds.

0f course, other objectives besides performance may be of
interest. Reliability, cost, supportability and producibility
are some objectives that frequently must be addressed 1in
designing systems. In each case, a stated level of achievement
is what is required at the subsystem level.

The need for communication between levals in the hierarchy
of Figure 1 is currently satisfied by multiple desigrn iterations

in real world design processes. In fact, it must be emphasized

that a design of a large, complex system is characterized by many




design changes through iterations. As a result, decision support
for design decomposition should accommodate these design

alterations brought about by new information passed between

levels of the network.
1.1 The Rationale Behind Decision Support

Decision support for the design process has several
appealing functions besides potentially improving the ultimate
system design. A decision support system (DSS <« ~uld provide
greater managerial control of the design proces example, a
DSS should be a mechanism for coordinating sut ys :m designs.
This would allow the designer to recognize when a particular
subsystem design is insufficient to meet system needs, and what
the best alternative designs are. This feature would generatc
critical information early in the planning phase, and therefore
direct management's attention to the important design issues.
In addition, wusing a support system would allow the designer to
determine the system degradation due to not meecting a specitic
system specification.

The purpose of this paper 1s to describe a goal
decomposition approach that can be useful in a ©DSS for the
planning phase of engineering design. In the foliowing section
we describe some of the approiaches that currently exist tor
decision support of the design process. In scetion 3, a gouai
decomposition method i1s examined and related to the network in

Figure 1, In addition, some refinemenlts to the goal

decomposition algorithm are suggested. Section 4 contains two




example applications. Sectiun 5 conlains the concluding remarks.

2. DECISION SuPPORT FOR THE DESIGN PROCESS

The engineering design problem is typically expressed as:

(P1) min f(x,p)
subject Lo: g;(x,p) £ 0, i=1,...,1,
hj(g,p) = 0, J=1,...,7J.

In this model, the vector x is a vector of design variables; that
is, these are the variables that represent the freedoms of choice
that the design engineer has available. The vector p is a veclior
of model parameters.

Johnson and Benson (8], (9], have decomposed the design
problem by treating a subset of variables in the design problem
as parameters (p) and optimizing over the remaining variables.
The original subset of ‘"parameters" are then released and
optimji zed.

Sobieszczanski-Sobieski, et.al., [13], ‘14], have used
linear dJdevompositijon 1in an attempt to simplifly the larvge
nonlinear models that frequently represent a design problem.
This decompositicn is accomplished by computing the sensitivity
of the global soluttion to changes in subproblem solutions [15],
and representing these nhanges by first order approximations,
The ultimale advantages of this approach result from the explic:t
inclus ion of subproblem constraints in the global optimization
model and a reduction in the number of variables in the yglobal

model . In recent work [6], Haftka has attempted to improve upon

the 1linear decomposition method by removing the difficullies




encountered due to discontinuities in the derivatives that
migrate upwards throvgh the hierarchy.

Several authors have suggest the use of knowledge-based
systems to aid 1n the design construction. These approaches can
be dichotomized by the type of knowledge required in the system
and the use of that knowledge. In one case, the knowledge 1is
used for optimization [1], [2]. Systems of this type can be
thought of as addressing the more genz2ral issue of how knowledge
can be wused to aid in the search of optimal solutions for
mathematical models that are characterized by nonlinearities.
Surprisingly, the use of knowledge specific to the design domain
has not been used to full advantage in these systems.

The other type of knowledge-based system contains knowledge
specific to design, but does not ewmphasize optimization (3j, [41i.
While these systems can produce quality designs, the designs are
based on heuristics and are therefore best suited for producing

designs that meet stated specifications.

In this paper we will examine a method of decomposition that
makes use of goal programming. One of the primary motivating
factors for this approach is thal it is felt that the employment
of goals instead of "pure constraints"” conforms closely to Lhe
type of decision making currently used in the initial design
process. Moreover, ti.e decision support architeclure which 1s

examined may take advantage of a variety of other modeling

techniques currently available; 1.e., the Sobieszczanski—-Sobieskti




approach, knowledge-based models, etc.

In what follows, wc¢ will use the term objective to mean a
state that a decision maker has identified as desirable to
attain. The term attribute is used to describe a measure which
can be used to determine the degree to which the desirable state
has been achieved. We will assume throughout this paper that
with sufficient perseverance, a set of attributes may be
determined that will measure the objective to the satisfaction of

the decision maker.

3.1 Decisinn Variables

One of the fundamental characteristics that differentiales
the goal decomposition approach from the methods of
decomposition that have been found 1in the mechanical/aerospace
engineering literature is the treatment of design wvar.ables,
Consider once aganin the design hierarchy depicted in Figure 1.
Imagine that an optimization has been performed at level l.
[nformation has been passed down from level 1 to level 2 via the
vector u, This vector contains the attributes of Lhe
subcomponent being designed at level 2 that arce desired from Lhe
perspective of the component being designed at level 1, As A
result, the vector u describes what it 1s thal we want buitt {Lhe

subcomponent at level 2).

The optimization at level 2 in Lo 11 describe how we
will Dbuild that subcomponent by fur... ¢ refinement of the
subcomponent into its major subcomponents. The design vartables

at level 2 are a vector w that contain the desired attribules of

the subcomponent at the 3rd level of the hierarchy. These values




are determined from an optimizalion that will choose w so that
the attributes of level 1 (u) are met as closely as possible

while not violating any constraints that are placed on

w.
The goal programming formulation at level i, 1 = 1, ,I-1,
may be described as
- + .+ - -
(F2) min L bkdk + bkdk (1)
such that:
+ —_
- = = i
fk(y) dk + dk u o k 1, ...,K, (2)
w e 0. 0 3)
As described above, the value of u, in (2) was determined from a
goal optimization at level (1i-1), i=2,...,I-1. In the case

that the value of u, was generated at the 0th level (the top
level), some other multiobjective technique might have been uscd

to determine the desired values of the attributes of (he top

laevel.

The values b; and bk arc weights assigned to the
deviatians d; and d;, respectively, which are the amount by
which we have exceeded or fallen short of the kth pgoal. The
function fk(g) is the link between the subcomponent attributes
and the component attribute up -

The actual value of the kth attribute tha: can be achieved
in  {P2) is the value of fk(y) in equation (2) (recall that the
actual value that we would like to achieve is uk*). The value of
the kth attribute achieved, f

k(g*), where wx is the opltimal value

of w in (P2), may not equal uk* for two reasons: (1) The goal set

designated by equations (2) may be overly demanding and therefore




all of the ¢goal may not be achievable; (2) The space O in
equation (3) may constrain the problem from achieving all of the

goals.

The goal decomposition algorithm can be stated as follows:

Al. Optimize the attributes of level i, 1 = 1,...,I-1,
by mathematically rclating those attributes to
attributes of the subcomponents (level (i-1)).

A2. Using the values of the level i1 attributes obtained
in the optimization at level! (i-1) as goals,
optimize the attributes of level (i+1),
i=1,...,I-1.

A3. If necessary, perform a reoptimization at level
1 by passing constraints on the attributes
from level (i+1) te level 1.

Several iterations between levels (i+l) and i may be necessary to
obtain a satisfactory design. The constraints that are added to
the level 1 model in step A3 are needed to cause a reallocation
of resources. An example of the addition of these constraints 1is
shown in the first application of Section 4.

Since all of the goals in (P2) may not be met, the weighting
b; and b; in the objective function will tend to dictate which
goals are satisfied. Next we will show how these weight.ing may

be seleclted 8o that the pursuit of the goals at level i is

consistent with the desired design altiributes at level (i-1),

Theorem 1: Let (P2) describe tlte optimization ¢t level i and let
the following model describe the descendant optimizalion at lavel

(1+1):



(P3) min L c;e; + c.e. (4)

J J
such that:
+ - *
gJ(x) Tl toey Wy d T l, v I (5)
x e X (6)
Then, to first order approximation, the values of c; and C;
should be chosen according to the following algorithm:
(Bt) For each fk(y*) in equation (2), use the tollowing
rules to compute new constants aﬁ and a;:
+ + - -
(Bl.1) If fk(g*) = Uy let a, bk' a, = bk'
+ + - +
(Bl.2) If f,(w¥) > u ., let a, = b, a = -b;
+ - - -
(B1.3) 1If fk(g*) < Uy s let a) = -bk, a, = bk'
(B2) Form the values c; and c} in equation (4) by
= L a, af /ow. (wk) (7)
CJ k ak k J Wr ), [
Cj = i a éfk/awj {(wk). (8)
Proof:
Consider the first order Taylor’s series expansion of fk(g)
avrcund wx:
’ X
/ - - -
£, (w) £ (w¥) T afk/aw‘j (wx) (w‘j v, ). (9)

The term on the left hand side of (9) is the amount that Lt he
optimal value fk(w*) has been missed by the selection of w. The

right hand side of (9) contains the term (wj - W *), which 1is

J
Lthe amount by which the level (i+l) optimization was unable (o
%
mecet the goal WJ that was passed down frum the level i

oplimization. Thus equalion (9) depicts the influence that the

9




failure to meet goal wj* at level (i+1l) has on the optimization

at level 1i. If, for example, fk(g*) > uk*, the optimal value of
wk caused the attribute represented by fk(g*) at level i to
be exceeded, and d; >0, d; = 0 in equation (2). If the value

of w realized from

. = . . j = 1,...,J,
W gd(x) J

does not equal wj* (the goal) but instead exceeds wj*’ then the

value of the objective functicn at level i will <change by
by [f(w) = £, (wH)],

(here we assume that w is near wX so that fk(g) > uk*).

But this is just the right hand side of (9) multiplied by the
appropriate weight from the level 1 optimization. Multiplying
the right hand side of (9) by b; yields the result for the
special case that fk(g#) > uk* {number 2, part A of the
algorithm). The other parts of the algorithm can be determined

from similar arguments.

(1) If there are no constraints in equation (3) that

connect wJ’s from different subproblems, then a feasible design
at level i may be assured easily at level (i1+1) by adding the
constraint
gj(z) e N
to problem (P3).
(2) If the optimization at level (i+1) does not meet Lhe
goals w*, then a reoptimization at level I may generate a better

(or feusible) solution when taking into account the best values




of the attributes that could be achieved at level (1i+1). In this
case, the following cuts may be added to equation (3):
(AY If gj(g*) = wj*, then add no cuts;
(B) If gJ(g*) > wJ*, taen add the cut
w. oD gJ.(>_<*);
(cy If gj(g*) < wj*, then add the cut

w. < gj(g*).

J
{(3) The problem that a multipurpose component (a component
with multiple parent nodes in the decomposition network) causes

can be coordinated in this process by adding separate goals ftrom
each parent optimization. For example, if a multipurpose
component 1is passed down the goal w,x = | from one parent

1

optimization and wl* = 2 from the other parent optimization,

then the following two goals should be added to the subproblem:

g, (x) +d] -d] = 1,
- +
gl().() ‘ dz = dz - 2!
where wp ® gl(g). The coefficients 1n the objective function

will help determine which of these contradicting goals should

dominate.

4. APPLICATIONS

The first system design that will be optimized using goal
decomposition 1s depicted in Figure 2a. We Dbegin with this
conceptual system to illustrate the techniques thut may be
employed to model system coat and reliability, Similar models

may be built to include attributes measuring system perturmance,

11
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supportability, and producibility.

The network decomposition of this system is shown in Figure
2b. At level 1, the system is viewed as consisting of two
components in series, as indicated by the dotted line in Figure
2a. We will assume that Component 1 may be viewed as consisting
of two identical components in parallel, while component 2
consists of two components 1n series.

We shall also assume that an optimization has been performed
at level 0 that specified the target values of the reliability

and cost of the entire system to be R* = ,995 and C* = $2000.

Let:

el
u

Reliability of component i, i1 = 1,2,

= Probability that the component operates without
failure over a specified time interval,

C.1 = Cost of component i, 1 = 1,2,
R.,. = Reliability of subcomponent (i,j), i = 1,2,
ij .
J = 1,2,
Cij = Cost of subcomponent (i,y), &t = 1,2, j = 1,2.

It 1is also assumed that R1 and R2 must be at least .95

respectively, and that the total budget for the system is $2600.

and .02

In order to build a mathematical model of the system, it is
first necessary to determine how reliability influences cost.
Suppose that by experience it is known that the reliability of

the subcomponents is rclated to the cost of the subcomponents

10

the following way:
C11 = -200 1In{l - Rll(z - Rll)}’ {1y)

C,, = C

o (o




022 = 1/(1 - R22). (13)

Notice that in each of these cases the cost of the subcomponent
increases rapidly as the reliability approaches 1.

The development of the cost functions C1 and 02 for an

optimizatinn at level 1 in Figure 2b presents two significantly

different problems. Component 1 consists of Lwo identical

components in parallel; and, therefore, the cost function may be

written simply as

CI = C]l + C12
= -400 1n{l - Rl}, (14)
since
= — \ r;\.
Rl R11(2 Rll" (15
On the other hand,
= ]‘
€2 Cay * Cap (16)

cannot be written as a simple function of

Ry = RayRoyp- (7
Consequently, the developer of a model has two alterpalive
approaches: (1) Include in the level 1 optimization model
mathematical e¢xpressions that involve RZI and R22’ which are
level 2 attributes; or (2) Estimate the cost function C, as a
function of R2' The former alternative regresses toward the
problem that prompted dccomposition in the first place: the

model begins Lo grow latrger because we have decided to include
too much detail in the model at the higher levels in the network.
The second alternative risks the loss of some information in the
estimation process but maintains the spirit of decomposition.

For example, using equations (12) and (13}, the folluwing

4
o




table of costs for alternative designs may be easily constructed:

Ry (1= 1,2) Coy Con
9 $ 12 $§ 10
925 16 13.3
35 24 20
375 48 40
39 120 100
995 240 200
999 1200 1000

Table ]—-C21 and C2

Using equation (17) and different combinations of R,, and

R22, values of 02 may be computed from Table 1. Next, a least

square estimation technique may be used to develop an estimale of
C, as a function of RZ' Such a model was developed for this

example from 15 combinations of R21 and R22 which yielded the

cost function:

C, = 154.2 + 4.8(1 - R,)\. (18)

- “~

The optimization model at level 1 may now be written as:

i ) - +
(ML) min 2z = 5000(11 + d2

such that




as well as equations (l4) and (18) are satisfied and all of the
variables in the model are non-negative.

The coefficients in the objective function of (Ml) reflect
the trade-ofts that were judged reasonable by the decision makers
at level 0 and have been assumed for this example. The optimal

solution to (Ml) generated by GINO {[10] is:

z = 158.187 d£ =0 C, = 455.48
— . + . -

d, = .032 dy = 0 R, = .97896
-+

d; =0 C, = 1544.52 R, = .98407

To generate a model that optimizes the design of the
subcomponents, we need to use the values of Ci and Ri’ i =1,2,
that were computed in the optimal solution to (Ml}). In addition,
the results of Theorem 1 are needed to search for solutions thal
are consistent with the level 1 optimization. The models (1111
and (M12) for components 1 and 2 respectively and Lhelir
solutions may be found in appendix A.

(M11) and (Ml2) contain constraints that are local to the
subcomponent design as depicted by equation (6). For example, 1in
(M11), Rll < .8, The solutions for C.1 and Ri in (M1l) are used as
the goals in (Ml1} and (M12). Also notice that the constraints
0.95 < Rl < 1 have been included in (Mll) as suggested in (1) of

- /

section 3.2.

Table 2 compares the values of Ri and Ci’ 1 1,2, that were

generated in the solutions of (Ml) with (M1ll) and (M1Z2). It is

clear from this table that the largest value of H1 that «caun




possibly be generated is .96, and that $1287.55 is the largest
budget needed; otherwise, additional dollars would have caused

the solution of Rl in (M11l) to be larger.

Derived from Achieved at
Variable Level 1 Level 2
Rl .97896 .96
Cl 15614.52 1287.55
R2 .98407 .97752
C2 455.48 455.48

Table 2--Attribute Goals and Values Realized
in (M1ll) and (M12)

If the constraints Rl < .96 and Cl < 1287.55 are added to

(M1), the new solution to (Ml) becomes

z = 216,272 d, = 0 C, = 712.45
- +

d; = .043 d, = 0 R, = .96

i = = = ¢
d, = 0 c, = 1287.55 R, = .9914

This solution is, in fact, the globally optimal design; i.c., thec
design that would be generated if we had built one model that had
contained all of the constraints on the component and
subcomponent designs.

Iu summary, in order to generate the globally optimal
design, it was necessary to pass information aownward through the

decomposition network that described the desired attributes of

the system. Information in the form of constraints was passed

upward Lthrough the network that indicated the best achievabloe




values of the attributes. A reoptimization was performed that
reallocated the resources (in this case budget dollars) to
improve thc design. Further optimization iterations, in general,

would continue to improve the design.

Consider the problem of designing a water pumping system and
a structural support for the pumping system. As shown 1n Figure
3a, it is assumed that the water pumping system consists of two
parallel pumps that draw water from a lower reservoir and pump
the water into a reservoir that is 150 feet above the lower
reservoir [16]. The pumping system is to be positioned on a 30
foot reinforced concrete beam of depth 30 inches as discussed in
{9)]. The decomposition network for the pump/beam system is shown
in Figure 3b.

Assume that a budgect of $950 may be spent on the project but
that the desired budget is $900 (as determined in an optimization
at level 0). A goal of 200 feet for the head 1le¢ss hus been
established to take into account the loss of energy duc to
friclion in the pipes. This head loss must be, at o minimum, 160

feet. In addition, a goal of 6480 in k of flexural strength is

desired in the beam. Define:

C1 = Cost of the pump subsystem,
C2 = Cost of the beam subsystem,
H = Head loss,
S = Flexural strength of the beam.
Prior experience has shown that C, and C, increase with [

1 2




and S in the following way:

l)
c, = .01125H% + .B75H, (19)
c, = .05787s. (20}

Assuming once again that the optimization at level 0 has supplied
the coefficients in the objective function that rveflect the
trade—-offs that would be considered appropriate at the top

level, the pump/beam optimization model can be written as:

(M2) min 2z = d; + 5d, + .0926d,
such that
C, +C, - d +d] = 900
H - d. o+ dé = 200
+ - -~
S - dy + d3 = 6480
Cy + C2 < 950
H > 160
dta’ = 0, i=1,2,3,
1 1

equations (19) and (20) hold and all variables in the model are

nonnegative. The optimal solution to (M2) 1is:

+ »
z = 96.875 d2 = 0 C2 = 375
dl =0 d3 =0 H = 183.34
+ +
d, = 13.59 d, = 0 S = 6480
1 3
d, = 16.66 C, = 538.59
4.2.1 Level 2 Models
Next consider the optimization of the pump subject to local
constraints. In this exanple, assume that the headluss may he
cxpressed in lLerms of the flow rates {cubic feet/seccond;, Fo,

through pump 1, 1 = 1,2:
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H o= A + 30K - 6F% (21)

H = B =+ 20F, - L2F (22)
In these expressions, A and B are parameters which specify
attributes of the pumps. The selection of the pumps 1is
restricted to

50 < A ¢ 130 (23)

200 ¢ B ¢ 220. (24)

The amount of flow in euach pump is restricted to be at Lfeast
cubic feet/second.
Let Clj be the cost of pump j, Jj = 1,2, The cost of the

punps 1is related Lo the flow rate via

- s ¥ ~4A}
C11 = 100 Fl (25
- P . AN
C12 120 P2. (26,

The total budget for the pump subsystem will be at least 3525,
The optimization model (M21) for the pump subsystem and the
optimal solution is given in appendix B.

The beam subsystem has design variables W and V, which

represent the width of the beam and the cross sectional area of

the reinforcing steel. For this example, it is assumed that the
reinforcing steel has standard sizes that come in .25 inch
increments. The flexural strength, S, of the beam i1s related to

W and V by

)
vV - .2458 V°/W > S/1080.

(27
The unit cost of the concrete is $.02/square inch/lineal
foot and the unit cost of steel is $1.00/square inch/lincat foot.

The length of the reinforcing steel is slightly less than the

length of the beum (29.4 feet), so that the cost ol Lhe steel 1is

S

~

given by 29.4V. The cost of the concrete is given by




.02 x (cross-sectional area of the beam) x 30

.02 x (W x 30) x 30

= 18 W.
The width of the beam must be at least 8 inches to provide
sufficient support to the pump subsystem. Once again using
Theorem 1, the optimization model (M22) for the beam subsystem
may be formulated and solved as shown in appendix C.

The wvalue of V in the solution of (M22) is not a 1ntegral
multiple of .25; as a result, this solution is not truly feasible
given the problem constraints. In order to achieve the optimal
feasible solution, two new models (M23) and (M24) may be formed
from (M22) by adding the constraints V < 7.75 in the first case
and V > 8 in the second case. Model (M24) has no feasible

solution, while the optimal solution to (M23) is given by:

z = 12.69 ; = 3.15 S = 6376.32
- +
e1 = 103.05 e2 = 0 W = 8
+
= = 7 =
e = 0 c, = 371.85 v 7.75

This soiution is therefore the optimal attributes for the design
of the beam subsystem. The solution to (M21) and (M23) may be

used to generate constraints in order to further constrain the

solution to (M2). This would begin a new iteration of the goal
decomposition algorithm. However, a designer may decide thal {he
design achieved by combining the solution to (M21) and (M23) Lo

be satisfactory.

5. CONCLUDING REMARKS

This paper has attempted to develop a broaddr perspective

20



of the engineering design problem by distinguishing the type of
optimization problems that occur at the top and lower levels of
the design hierarchy. One key feature of middle and lower level
oplimizations is thal subsystem optimization does not correspond
directly to performance, cost, etc. oplimization,. A goal
decomposition method was described and illustrated for
subcomponent optimization. This decomposition method had a
natural objective function that tended to cause the solution of
the subproblem to drive the solution of the oplimization one
level higher to its best possible feasible solution.

The architecture of the decision support system described
using goal decompositicn readily enhanced the iterative nature of
the design process. In the first example shown in this paper, a
single reoptimization found the best global solution to the
design problem once additional information was supplied to the

level 1 model by subsystem optimizations.
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APPENDIX

(M11) min 2z = -4920.34e’ + 4920.34e] + e,

1 1 2
such that
+ —
Rl - e t e = ,97896
+ -
C1 - e2 + e, = 1544.5
Ry = Ry (2 -
Rl > .95
Rl < 1
Rll < .8
e.'.’e-, = 0 1
i
as well as equations (10), (11), and (14)
nonnegative.
Optimal solution:
o+
z = 93.78 e, ° 0 C1
+ - »
e, = 0 ez = 256.97 Rll
€, = 256.97 Rl 96 C11
) + - +
(M12) min 2z = -4894 Bel + 4894 8el + e,

such that

2

11’

= 1,2

and all variables are

= 1287.55
= .8
= 643.78



[s
R22 > .99
Roo 2 1
efef = 0 1= 1,2
1 i

as well as equations (12), (13), and (16) and all variables are

nonnegative.

Optimal solution:

z = 32.04 e; =0 Ry, = .99747
eI =0 e, = 0 c, = 455.48
ei = .00655 R, = .97752 C, = 60

R,y = .98 C,, = 395.48

o



APPENDIX B

(M21) min =z = —5el + 5e1 + e, - e,
such that
H - eI + el = .98407 .
C. - er + e_ = 538.59
1 pA 2
¢ = 0 Y0
Cl 2 515
F, > 2
F, > 2
ele’ = 0 i=1,2
1 1

as well as equations (21)-(26) and all variables are nonnegative.

Optimal solution:

z = 73.25 c, = 525 F = 4.71
+ €
e] = 0 C,, = 199.64 F =2
Tz = 3 = 2 ]
e] = 17.37 C,, = 325.46 F, = 2.71
e; = 0 A = 130 H = 165.97
eé = 13.59 B = 200

26




. - - .t
(M22) min 2z = .0926el e2 + e2
such that
. S T ey + e = 6480
+ -
C2 - e2 + e2 = 375
02 = 29.4V + 18W
W > 8
ele’ = 0 i= 1,2
i1

as well as equation (27) and all variables are nonnegative.

Optimal solution:

z = 12.69 C2 = 375

e; = 0 S = 6437.17
ei = 103.05 W =8

e; =0 V= 7.857

e, = 3.15

[N




YA0M3BN uoTITsoduooog--1 aanbrg

RORGRG

2
N
28

ol

STIAVILVA AT |
NOISI23Q q




— o - e p— e -

-

e e e e ae e

COMPONENT 2

COMPONENT 1

Figure 2a—A Conceptual System

29




LEVE

——————

[~

: WE @E

Figure 2b—Network Cecampositicon
of the Conceptual System




v . r’\—j/RESERvo;R
R___/ —PUMPS
]50’ ] 2
130" BeaM
NE ‘;_/IL,/\‘/LOWER

RESERVOIR

L !

Figure 3a--Water Pumping System




WATER PUMPING
SYSTEM

PUMPS Bz AM

Figure 3b~-Network Deccampositicn of the
Water Pumping System




